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a b s t r a c t

Whenmaking investment decisions, onewill face not only the risk of financial assetswithin
portfolio but also background risk. This paper discusses an uncertain portfolio selection
problem in which background risk is considered and the security returns and background
assets return are given by experienced experts’ evaluations instead of historical data.
Regarding the returns of the securities and background assets as uncertain variables, we
propose an uncertainmean-riskmodel with background risk for portfolio selection and the
crisp forms of the model are provided when security returns obey different uncertainty
distributions. In addition, when everything else is same, it is concluded that the optimal
expected return of the mean-risk model with background risk is usually smaller than
that without background risk. Moreover, the relationship between the optimal solution
of our model and that of the model in Huang’s paper ‘‘Uncertain Portfolio Selection with
Background Risk’’ is discussed. Finally, numerical examples are presented to illustrate
the effectiveness of the model and to show the effect of background risk on investment
decision.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Portfolio selection problem is to consider how to allocate one’s capital in different risky securities in order tomaximize the
return of portfolio with risk control. Markowitz [1] first proposed themean–variancemodel in 1952, which is the foundation
of modern portfolio theory and has been the most impact-making development in mathematical finance management.
However, measuring the risk by the variance of return of a portfolio has some limitations. In view of this, scholars studied
other methods to measure investment risk of the portfolio and built a lot of portfolio optimization models, such as, mean–
semivariance model [2,3], expected absolute deviation model [4], Value-at-Risk model [5,6], Conditional Value-at-Risk
models [7,8], mean–semivariance–CVaR model [9], etc. In this paper, risk curve [10] will be used as the risk measure since
it provides information about all the likely losses.

These researches assume that all that investors face only portfolio risk when making portfolio selection decisions. Yet,
in reality, investors also face background risk, which arises from various sources, including variations in labor income,
investments in real estate, unexpected expenses related to health issues and so on that cannot be traded in the financial
market [11,12]. We also refer to the assets that are exposed to background risk as background assets [13]. It is the total
risk rather than the sole portfolio risk that is of investors’ major concern. Many studies have showed that the presence of
background risk can affect investments [14,15]. For example, Heaton and Lucas [16,17] found that labor and entrepreneurial
incomes affected portfolio selection. Rosen and Wu [18] showed that investors with bad health were more willing to put
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most of their capital in the low risk assets. The research of Tsanakas [19] revealed that the presence of background riskmade
risk measurement sensitive to the scale and aggregation of risk. To help investors select portfolio in face of background risk,
scholars did a large number of researchworks and developed a variety ofmodels for portfolio selectionwith background risk
in different situations. Hara et al. [20] found that background risks can increase cautiousness and provided the necessary and
sufficient conditions under an individual’s expected utility framework. Huang and Wang [21] further studied the portfolio
frontier characteristics when risk-free asset is considered. These studies all reveal that investors who consider background
risk will become more risk averse and prefer to choose safer assets. Therefore, a portfolio selection model that background
risk is considered will be discussed in this paper.

In portfolio theory, the security returns are generally considered as random variables and their characteristics such
as expected value and variance are calculated based on the sample of available historical data. It remains valid when
there are plenty of data in the developed financial market. However, there may be lack of enough transaction data
in some emerging markets. Especially, for background asset returns, there are much subjective impression rather than
randomness, then if people still use probability theory to solve this problem, counterintuitive results may occur [22,23].
In these situations, scholars found that the security returns data and background assets return can be estimated by
experienced experts and fuzzy set theory appears [24]. In particular, fuzzy theory is also applied to portfolio selection [25,26].
Huang [27,28] established the mean–variance for portfolio selection in fuzzy environment. Subsequently, semivariance of
fuzzy variable is employed to measure risk and mean–semivariance model is proposed by Huang [28]. Qin [29] presented
fuzzy cross-entropy method for portfolio selection. In 2010, Li [30] further formulated mean–variance–skewness model
which considered the skewness to measure the asymmetry of fuzzy portfolio return. Although fuzzy portfolio optimization
provided alternatives to estimate security returns when lack of data, fuzzy theory suffers from criticism since a paradox will
appear. In order to better describe the subjective imprecise quantity, in 2007, Liu [31] developed uncertainty theory. Based
on this framework, Huang [32] introduced uncertainty theory to portfolio selection and produced an uncertain portfolio
theory. Later, Huang [33] defined the risk curve in uncertain environment and built an uncertain mean-risk model. In 2012,
Huang established a risk index model [34] and a mean–variance model [35] for portfolio selection and the security returns
were given by experts’ evaluations. For optimal project selection and schedule, Huang [36] presented mean–variance and
mean–semivariance model based on uncertain measure. Zhang [37] first applied uncertainty theory to a multinational
project selection. Moreover, the mean–variance model for portfolio optimization problem in the simultaneous presence
of random and uncertain returns was proposed by Qin [38]. Numerous studies have been done about uncertain portfolio
selection but a few papers consider background risk and regard background assets return as uncertain variables. Until 2016,
Huang [39] researched the model with background risk for uncertain portfolio selection. In this paper, we will study an
uncertain portfolio selection problem with background risk and security returns and background assets return are given by
experts’ evaluations. We analyze the effect of background risk on portfolio decision.

The rest of the paper is organized as follows. Section 2 in detail describes the mean-risk model with background risk
for portfolio selection based on uncertainty theory and some important theorems are proved. In Section 3, we employ the
numerical examples to illustrate the validity and significance of themodel. In Appendix, we review the necessary knowledge
about uncertainty theory.

2. Mean-risk models with background risk

2.1. Uncertain models

Investors’ uncertain return includes uncertain portfolio return from financial assets and uncertain return from back-
ground assets. When these asset returns are given by experts’ estimations, it is better to use uncertain variables to
describe them. Since all background assets have same features that are different from financial assets, i.e., non-tradable
and unhedgeable, the popular way is to use one parameter rb to show the returns from all background assets in real life.
In addition, we assume that the background asset return rate has zero expected value. The assumption that non-tradable
background asset has zero expected return rate, which is in consistent with assumptions of most researches studying
portfolio with background risk [15]. The model we proposed is also applicable in the situation where the expected value
of the background asset return rate differs from zero.

Firstly, the definitions of risk curve and confidence curve will be introduced as follows:

Definition 1 ([33]). Let ξ be an uncertain return rate of a security, and rf the risk-free interest rate. Then the curve

R (r) = M
{
rf − ξ ≥ r

}
, ∀r ≥ 0

is called the risk curve of the security.

Since all investors know that they may lose as well as gain in investment, they will have a maximum tolerance towards
occurrence chance of each likely loss level, we call it confidence curveα (r). The common trend of the curve is that the severer
the loss, the lower tolerance level the investors have towards the occurrence chance of the loss. Three types of confidence
curve are usually employed, for example, the forms of linear function, piecewise function and power function. We can find
that a portfolio is safe if its risk curve is below the confidence curve, a portfolio is risky if any part of its risk curve is above
the confidence curve.
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Let ξi be the uncertain return rates of the ith securities, xi the investment proportions in the ith securities, i = 1, 2, . . . , n.
Then the risk curve of the portfolio is denoted as follows:

R (x1, x2, . . . , xn, rb; r) = M
{
rf − (ξ1x1 + · · · + ξnxn + rb) ≥ r

}
, ∀r ≥ 0,

where rf denote risk-free interest rate, and rb the return rate of background asset, the expected value of rb is 0. The
background assets are independent with other n independent assets. Let us take rp =

∑n
i=1ξixi + rb. Since a portfolio is safe

if the risk curve is below the confidence curve, so the optimal portfolio should be that its risk curve is below the confidence
curve andmaximize the expected total return. The uncertainmean-riskmodel with background risk is expressed as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

max E [ξ1x1 + ξ2x2 + · · · + ξnxn + rb]
s.t. R (x1, x2, . . . , xn, rb; r) ≤ α (r) , ∀r ≥ 0,
n∑

i=1

xi = 1,

xi ≥ 0, i = 1, 2, . . . , n

(1)

where E is the expected value operator of uncertain variables and α (r) is the confidence curve.

2.2. Crisp form of mean-risk model with background risk

Theorem1. Let Φi denote the continuous uncertainty distribution of the ith security return rate ξi whose inverse functionΦ−1
i (α)

exists and is unique for each α ∈ (0, 1), i = 1, 2, . . . , n, respectively. Suppose the uncertain return rate of background asset rb
has continuous and strictly increasing uncertainty distribution function Θ . Then the mean-risk model with background risk (1)
can be transformed into the following linear model:⎧⎪⎪⎪⎨⎪⎪⎪⎩

max x1E (ξ1) + x2E (ξ2) + · · · + xnE (ξn)

s.t.x1Φ−1
1 (α (r)) + x2Φ−1

2 (α (r)) + · · · + xnΦ−1
n (α (r)) + Θ−1 (α (r)) ≥ rf − r, ∀r ≥ 0,

n∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, . . . , n.
(2)

Proof. It follows from Theorem 7 that the objective function of model (1) can be transformed into the objective function of
model (2).

Since

R (x1, x2, . . . , xn, rb; r) = M
{
rf − (ξ1x1 + ξ2x2 + · · · + ξnxn + rb) ≥ r

}
= M

{
ξ1x1 + ξ2x2 + · · · + ξnxn + rb ≤ rf − r

}
.

Then according to themonotonicity property of uncertain variable, the first constraint in model (1) can be converted into
the following form:

x1Φ−1
1 (α (r)) + x2Φ−1

2 (α (r)) + · · · + xnΦ−1
n (α (r)) + Θ−1 (α (r)) ≥ rf − r.

The theorem is completed. □

Next, the crisp forms of model (2) will be introduced when the distribution of security return rates is determined.

Theorem 2. Suppose the return rates of the ith securities are all normal uncertain variables ξi ∼ N (µi, σi), i = 1, 2, . . . , n. The
return rate of background asset is rb and rb ∼ N (0, ρ). Then the model (2) can be transformed into the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max x1µ1 + x2µ2 + · · · + xnµn

s.t.
n∑

i=1

(
µi −

√
3σi

π
ln

1 − α (r)
α (r)

)
· xi −

√
3ρ
π

ln
1 − α (r)

α (r)
≥ rf − r, ∀r ≥ 0,

n∑
i=1

xi = 1,

xi ≥ 0, i = 1, 2, . . . , n.

(3)

Theorem 3. Suppose the return rates of the ith securities are all zigzag uncertain variables ξi ∼ z (ai, bi, ci), i = 1, 2, . . . , n. The
return rate of background asset is rb and rb ∼ N (0, ρ). Then the model (2) can be transformed into the following form:
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When α (r) ∈
(
0, 1

2

]
,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

ai + 2bi + ci
4

xi

s.t.
n∑

i=1

2α (r) (bi − ai) xi +
n∑

i=1

aixi −

√
3ρ
π

ln
1 − α (r)

α (r)
≥ rf − r, ∀r ≥ 0

n∑
i=1

xi = 1,

xi ≥ 0, i = 1, 2, . . . , n.

When α (r) ∈
[ 1
2 , 1

)
,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

ai + 2bi + ci
4

xi

s.t.
n∑

i=1

2α (r) (ci − bi) xi +
n∑

i=1

(2bi − ci) xi −

√
3ρ
π

ln
1 − α (r)

α (r)
≥ rf − r, ∀r ≥ 0

n∑
i=1

xi = 1,

xi ≥ 0, i = 1, 2, . . . , n.

2.3. Discussion of the optimal solution of the mean-risk model with background risk

Obviously, themodel (3) is a linear programming problem. The optimal solution of themodel (3) can be obtained by using
simplex method. Next, we will discuss the solution of model (3). The standard form of the model (3) is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maxµ1x1 + · · · + µnxn + 0 · xn+1

s.t.
n∑

i=1

(
µi −

√
3σi

π
ln

1 − α (r)
α (r)

)
xi − xn+1 ≥ rf − r +

√
3ρ
π

ln
1 − α (r)

α (r)
, ∀r ≥ 0

n∑
i=1

xi = 1,

xi ≥ 0, i = 1, 2, . . . , n + 1.

(4)

Let λi = µi, i = 1, 2, . . . , n, λn+1 = 0, hi = µi −

√
3σi
π

ln 1−α(r)
α(r) , i = 1, 2, . . . , n, hn+1 = −1, d2 = 1, d1 =

rf − r +

√
3ρ
π

ln 1−α(r)
α(r) .

Then model (4) can be transformed into the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

λixi

s.t.
n+1∑
i=1

hixi = d1

n∑
i=1

xi = d2, xi ≥ 0, i = 1, 2, . . . , n + 1.

(5)

By using simplex method and after a series of iterations, the model (5) can be transformed into the following form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
max z = z0 +

n+1∑
j=3

λ′

jxj

s.t. x1 + h′

1,3x3 + · · · + h′

1,n+1xn+1 = d′

1 (I)
x2 + h′

2,3x3 + · · · + h′

2,n+1xn+1 = d′

2 (II)
xi ≥ 0, i = 1, 2, . . . , n + 1

where

z0 = λ1d′

1 + λ2d′

2, λ′

j = λj − h′

1,jλ1 + h′

2,jλ2, j = 3, . . . , n + 1.
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Similar to the analysis in Huang’s paper [39]. We can obtain the following lemma:

Lemma 1. Suppose X (0) =
(
d′

1, d
′

2, 0, . . . , 0
)
is a basic feasible solution of the model (5). If λ′

j ≤ 0, j = 3, 4, . . . , n + 1, then
X (0) is an optimal solution of the model (5).

The mean-risk model without background risk is established as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max x1E [ξ1] + x2E [ξ2] + · · · + xnE [ξn]
s.t. x1Φ−1

1 (α (r)) + x2Φ−1
2 (α (r)) + · · · + xnΦ−1

n (α (r)) ≥ rf − r, ∀r ≥ 0,
n∑

i=1

xi = 1,

xi ≥ 0, i = 1, 2, . . . , n.

(6)

Theorem 4. For any given r and confidence curve α (r) (0 < α (r) < 0.5), the expected return of the optimal portfolio with
background risk is smaller than that without background risk.

Proof. Let X = (x1, x2, . . . , xn), then the constraint of the model (2) can be represented as follows

f (X, α) = x1Φ−1
1 (α (r)) + x2Φ−1

2 (α (r)) + · · · + xnΦ−1
n (α (r)) + Θ−1 (α (r)) ≥ rf − r.

Let g (X, α) be the constraint of the model for portfolio selection without background risk, then

g (X, α) = f (X, α) − Θ−1 (α (r)) .

Suppose X1 is the optimal solution of the portfolio selection model with background risk, then for any r ≥ 0, we have
f (X1, α (r)) = rf − r . In real life, many investors only care about ‘‘0 < α (r) < 0.5’’, because ‘‘α (r) ≥ 0.5’’ means
the investors know that the occurrence chance of each likely loss is too large. When the expected value of rb is zero and
α (r) < 0.5, we can obtain Θ−1 (α (r)) < 0, so g (X, α) > rf − r . That is to say X1 is a feasible solution of the model (6).

Similar to the above analysis, suppose X2 is the optimal solution of the model (6), then

g (X2, α) = f (X2, α) − Θ−1 (α (r)) = rf − r.

Hence, it is easy to get f (X2, α (r)) < rf − r . Obviously, X2 is not the feasible solution of the model with background risk.
For a given r value, the expected return of the optimal portfolio with background risk is smaller than that without

background risk. □

In fact, Theorem 4 is true if the uncertainty distribution of background asset return is symmetrical not just the normal
uncertainty distribution. Becausewhenbackground asset return rate rb is symmetrical, it is clear that in this case the expected
value should be the value ofΘ−1 (0.5). Thus, Theorem 4 can be proved under the assumption that the expected value is zero
in the beginning of the text. On the other hand, when the uncertainty distribution of background asset return is asymmetric,
Theorem 4 is also true if the uncertainty distribution function Θ satisfies Θ−1 (α (r)) < 0 when α (r) < 0.5. The upper
bound of confidence curve α (r) the investors give is usually less than 0.5 or even smaller, so this theorem is true in most
cases.

The model in Huang’s paper can be converted into the following form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max E [ξ1x1 + ξ2x2 + · · · + ξnxn + rb]
s.t. x1Φ−1

1 (α) + x2Φ−1
2 (α) + · · · + xnΦ−1

n (α) + Θ−1 (α) ≥ H,
n∑

i=1

xi = 1,

xi ≥ 0, i = 1, 2, . . . , n.

(7)

Theorem 5. The optimal solution of the model (1) is also the optimal solution of model (7), but not vice versa.

Proof. If r is a deterministic value, the model (1) can degenerate the model (7). It is obvious that the optimal solution of
model (7) in Huang’s paper is only one solution of model (1) for a given r , but is not always the optimal solution of model
(1).

3. Numerical examples

In this section, numerical examples are presented to illustrate the proposed mean-risk model with background risk for
uncertain portfolio selection and to show the effect of the background risk on the portfolio selection decision. The following
results are programmed in Matlab2009a.
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Table 1
Normal uncertain return rates of 10 securities.

Security i Uncertain return rate ξi Security i Uncertain return rate ξi

1 N (0.027, 0.14) 6 N (0.028, 0.15)
2 N (0.033, 0.19) 7 N (0.030, 0.08)
3 N (0.032, 0.16) 8 N (0.032, 0.18)
4 N (0.039, 0.20) 9 N (0.025, 0.10)
5 N (0.031, 0.15) 10 N (0.026, 0.06)

Table 2
Optimal portfolios at different risk level (%).

r 0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3
Return rate 1 3.71 3.61 3.54 3.44 3.28 3.40 3.48 3.53 3.54 3.50 3.36
Return rate 2 3.25 3.31 3.27 3.18 3.03 3.15 3.23 3.28 3.29 3.25 3.12

Remark: Return rate 1 denotes the return rate without background risk and Return rate 2 the return rate with background risk.

Table 3
Zigzag uncertain return rates of 10 securities.

Security i Uncertain return rate ξi Security i Uncertain return rate ξi

1 Z (−0.16, −0.01, 0.14) 6 Z (−0.17, 0.00, 0.33)
2 Z (−0.13, 0.01, 0.19) 7 Z (−0.24, 0.02, 0.45)
3 Z (−0.13, 0.03, 0.20) 8 Z (−0.14, 0.03, 0.21)
4 Z (−0.18, 0.02, 0.16) 9 Z (−0.21, −0.01, 0.18)
5 Z (−0.14, 0.00, 0.18) 10 Z (−0.10, 0.03, 0.20)

Example 1. We select ten stocks. The data we select is from the paper [33]. The estimation of the security return rates is
given in Table 1.

Suppose the monthly risk-free interest rate is 0.01. The experts believe that the background asset return rate has
uncertainty distribution rb ∼ N (0, 0.01), and the investor gives the confidence curve as follows:

α (r) =

{
−2.75r + 0.43, 0 ≤ r ≤ 0.12,
−0.5r + 0.16, 0.12 ≤ r ≤ 0.3,
0.01, r ≥ 0.3.

We discuss the optimal portfolio when security return rates are normal uncertain variables and calculate allocation
proportions of ten securities to maximize corresponding expected return rate. Set r ∈ [0, 0.3] in the model and let
r = 0, 0.03, 0.06, . . . , 0.3, respectively. The optimal portfolios with and without background risk at different risk level
can be shown in detail in Table 2.

Several conclusions can be obtained from above numerical experiment. For any determined r value, the expected optimal
portfolio with background risk is smaller than that without background risk. When security returns are normal uncertain
variables, the expected return of the optimal portfolio with background risk is 3.27% which is smaller than the expected
return of the optimal portfolio without background risk 3.28%. Considering background risk, investors should invest security
4 and security 7 and the allocation proportion is 29.64% and 70.36%, respectively. In addition, we have checked that the risk
curve of optimal portfolio with background risk is below the confidence curve, i.e. corresponding portfolio is in safe area.
In Table 2, higher expected return rates than 3.27% can be found when background risk is considered, but part of their risk
curve is above the confidence curve, i.e. corresponding portfolio is in risky area.

The relationship between risk curve and confidence curvewhen security returns are normal uncertain variables is shown
in Fig. 1. In this figure, the red broken line represents confidence curve and the blue curve represents risk curve. It can be
seen that risk curve is below the confidence curve.

Example 2. Using the data in Table 1, we can compute the optimal solution of model (7) when security returns are normal
uncertain variables. In this model, let α = 0.15, H = −0.08, ρ = 0.01. Corresponding risk curve and risk point of this
model are shown in Fig. 2. The point is below confidence curve but part of risk curve is above the confidence curve, thus the
numerical example demonstrates that the optimal solution of the model (7) is not the optimal solution of model (1) in this
paper.

Example 3. Suppose an investor plans to invest hismoney among 10 securities.Without loss of generality, assume the future
returns of the securities are zigzag uncertain variables denoted by ξi = Z (ai, bi, ci) for i = 1, 2, . . . , 10. The return rates of
10 securities are given in Table 3.
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Fig. 1. Confidence curve and risk curve when security returns are normal uncertain variables. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. The risk curve of model (7).

Set the risk-free interest rate is 0.01, the standard deviation of background assets return rate is ρ = 0.01, and the investor
gives his/her confidence curve as follows:

α (r) =

{
−2.90r + 0.448, 0 ≤ r ≤ 0.12,
−0.5r + 0.16, 0.12 ≤ r ≤ 0.3,
0.01, r ≥ 0.3.

It is clear that α (r) ∈ (0, 0.5). We discuss the optimal portfolio when security return rates are zigzag uncertain variables
and calculate allocation proportions of ten securities to maximize corresponding expected return rate. When considering
background risk, we can calculate optimal portfolio according to the model in Theorem 3. When background risk is not
considered, the model in Theorem 3 becomes the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

ai + 2bi + ci
4

xi

s.t.
n∑

i=1

2α (r) (bi − ai) xi +
n∑

i=1

aixi ≥ rf − r, ∀r ≥ 0,

n∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, . . . , n.

(8)
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Table 4
Optimal portfolios with background risk and without background risk (%).

Security i 1 2 3 4 5 6 7 8 9 10

Allocation proportion 1 0 0 0 0 0 0 28.04 0 0 71.96
Allocation proportion 2 0 0 0 0 0 0 30.04 0 0 69.96

Remark: Allocation proportion 1 denotes the optimal portfolio solved by the model with background risk and Allocation proportion 2 the optimal portfolio
solved by the model without background risk.

Fig. 3. Confidence curve and risk curve when security returns are zigzag uncertain variables.

Fig. 4. The expected return rate of optimal portfolios with different standard deviation (ρ) values of the background asset return rate.

By solving the linear programming problems, we can obtain the optimal portfolios with background risk and without
background risk when security return rates are zigzag uncertain variables. The results are provided in Table 4.

For any determined r , we can obtain that the optimal expected return with background risk is smaller than that without
background risk. Furthermore, the optimal expected return rate with background risk is 4.63% and that without background
risk is 4.68%. It can be seen that 0.0463 < 0.0468, which means that the expected value of the optimal portfolio with
background risk is smaller than that without background risk. Fig. 3 reveals the risk curve is below the confidence curve
when security return rates are zigzag uncertain variables.

In order to further show the impact of the background risk on the investment decision, we change the background risk
levels (i.e., change the standard deviation (ρ) values of the background asset return rates) and select the portfolios. The
change of the values of expected return rate and standard deviation of the optimal portfolios with the change of background
risk level (ρ) are obtained and shown in Figs. 4 and 5, respectively. From the detailed computational results, we find that the
relative errors among expected values do not exceed 1%. It also can be seen from Figs. 4 and 5 that the bigger the standard
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Fig. 5. The standard deviation values of optimal portfolios with different standard deviation (ρ) values of the background asset return rate.

deviation of the return rate of background asset, the smaller the expected return and standard deviation of the selected
optimal portfolio. This is because the greater the standard deviation of the return rate of background asset, the greater the
background risk that investors are facing. Hence, when investors face greater background risk, they prefer to put more of
their wealth in the low risk financial assets rather than risky assets. Obviously, background risk has a great effect on the
optimal portfolio selection decision.

4. Conclusions

In this paper, the effect of the background risk on investments has been discussed. In the complex financial and
social environment, there are situations where background assets return and the security returns have to be evaluated by
experienced experts due to the unexpected things and the lack of historical data. This paper has discussed that risk level can
be measured by risk curve and proposed uncertain mean-risk model with background risk for portfolio selection. The crisp
equivalents of the model are provided. In addition, for any given r , we have found that the expected return of the optimal
portfolio with background risk is smaller than that without background risk. Different from Huang’s model, our model can
consider all the possible risks that investors could tolerate.

Finally, both the numerical examples and the analysis show that the mean-risk model with background risk is effective
and background risk has a great effect on the investment decision.
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Appendix. Uncertainty theory

In this section, uncertainmeasure, uncertain variable anduncertainty distributionwill be introduced for easy understand-
ing of the paper. In 2007, Liu [31] proposed uncertainty theory and got a wide range of applications. Firstly, we introduce
the definition of uncertain measure.

Definition 2 ([31]). Let L be a σ -algebra over a nonempty setΩ . A set functionM : L → [0, 1] is called an uncertainmeasure
if it satisfies the following four axioms:

(1) (Normality)M {Ω} = 1;
(2) (Self-duality)M {Γ } + M {Γ c} = 1;
(3) (Countable subadditivity) For every countable sequence of events {Γi}, we have

M

{
∞⋃
i=1

Γi

}
≤

∞∑
i=1

M {Γi} .

The triplet (Ω, L,M) is called an uncertainty space
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(4) (Product measure [40]) For uncertainty spaces (Ωi, Li,Mi), i = 1, 2, . . . , the product uncertain measure is

M

{
∞∏
i=1

Γi

}
=

⋀∞

i=1
Mi {Γi}

where Γi are arbitrary chosen events from Li for i = 1, 2, . . ., respectively.
It is easy to prove that any uncertain measureM is increasing. That is,

M {Γ1} ≤ M {Γ2}

for any events Γ1 ⊂ Γ2.

Definition 3 ([31]). An uncertain variable is a function ξ : (Ω, L,M) → R, i.e. for any Borel set B of real numbers, the set

{ξ ∈ B} = {χ ∈ Ω |ξ (χ) ∈ B}

is an event.

Definition 4 ([31]). For any x ∈ R, the uncertainty distribution of an uncertain variable ξ is defined as Φ (x) = M {ξ ≤ x}. It
is said to be regular if it is a continuous and strictly increasing function with respect to x at which 0 < Φ (x) < 1, and

lim
x→−∞

Φ (x) = 0, lim
x→+∞

Φ (x) = 1.

The inverse function Φ−1 (α) is called the inverse uncertainty distribution of ξ if it exists and is unique for each α ∈ (0, 1).
Inverse uncertainty distribution plays a crucial role in the operations of independent uncertain variables.

Next we introduce some commonly used uncertainty distributions. An uncertain variable is called zigzag if it has a zigzag
uncertainty distribution

Φ (x) =

⎧⎪⎨⎪⎩
0, if x ≤ a,

(x − a) /2 (b − a) , if a ≤ x ≤ b,
(x + c − 2b) /2 (c − b) , if b ≤ x ≤ c,

1, if x ≥ c,

denoted by Z (a, b, c)where a, b, c are real numbers with a < b < c. An uncertain variable is called normal if it has a normal
uncertainty distribution

Φ (x) =

(
1 + exp

(
π (e − x)

√
3σ

))−1

, x ∈ R,

denoted by N (e, σ ) where e and σ are real numbers with σ > 0.

Theorem 6 ([31]). Let ξ1, ξ2, . . . , ξn, ξn+1, . . . , ξn+m be independent uncertain variables with continuous and strictly increasing
uncertainty distribution functions Ψ1, Ψ2, . . . , Ψn, Ψn+1, . . . , Ψn+m, respectively. Let f (r1, r2, . . . , rn, rn+1, . . . , rn+m) be strictly
increasing with respect to r1, r2, . . . , rn and strictly decreasing with respect to rn+1, rn+2, . . . , rn+m. Then

ξ = f (ξ1, ξ2, . . . , ξn, ξn+1, . . . , ξn+m)

is an uncertain variable whose inverse uncertainty distribution function is

Φ−1 (α) = f
(
Ψ −1

1 (α) , Ψ −1
2 (α) , . . . , Ψ −1

n (α) , Ψ −1
n+1 (1 − α) , . . . , Ψ −1

n+m (1 − α)
)
, 0 < α < 1.

Definition 5 ([31]). The expected value of an uncertain variable ξ is defined by

E [ξ ] =

∫
+∞

0
M {ξ ≥ x} dx −

∫ 0

−∞

M {ξ ≤ x} dx

provided that at least one of the two integrals exists.

Theorem 7 ([31]). Let ξ1 and ξ2 be independent uncertain variables with finite expected values. Then for any real numbers a1
and a2, we have

E [a1ξ1 + a2ξ2] = a1E [ξ1] + a2E [ξ2] .
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